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A Robust  Control  with a Neural Network Structure 
for Uncertain Robot  Manipulator 
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A robust position control with the bound function of neural network structure is proposed for 

uncertain robot manipulators. The uncertain factors come from imperfect knowledge of  system 

parameters, payload change, friction, external disturbance, and etc. Therefore, uncertainties are 

often nonlinear and time-varying. The neural network structure presents the bound function and 

does not need the concave property of the bound function. The robust approach is to solve this 

problem as uncertainties are included in a model and the controller can achieve the desired 

properties in spite of the imperfect modeling. Simulation is performed to validate this law for 

four-axis SCARA type robot manipulator.  
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I. Introduction 

Most industrial robots in the field adopt linear 

independent joint  controllers for the position 

control although the dynamics of  robots is highly 

nonlinear, e.g., due to the coupling among the 

link motions and the frictions in each joints. 

To accomplish the task (the position control 

subject to the robot dynamic property) efficiently 

and accurately, a variety of manipulator  control- 

lers have been developed. Among them, simple 

PD or PID control schemes are the most popul- 

arly used. Surprisingly, these control schemes may 

asymptotically stabilize the robot  in the sense of 

Lyapunov and show satisfactory performance for 
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low-speed motion. However, since the coupling 

effects due to centrifugal, coriolis and gravity 

terms become active in high-speed motion, the 

PD or PID controllers are no longer acceptable 

for the high-speed and high-performance task. 

Furthermore, it's difficult to achieve the precise 

model for the robot manipulators and its envir- 

onment. Namely, the dynamics of  robot mani- 

pulator include uncertainties such as incorrect 

parameter, friction, varying payload and distur- 

bances and etc. The robust approach is to solve 

this problem as uncertainties are introduced in 

a model and a controller is designed to achieve 

the desired properties in spite of the imperfect 

modeling. The deterministic robust control de- 

sign of manipulators can be found in, e.g., Chen 

(1991), Chert and Pandey (1990), Reithmeier and 

Leitmann ( 1991), Shoureshi et al. (1987), Ha and 

Han (2000), Han et al. (1997) and their bibliogra- 

phies (Ge et al., 1998, 2001, 2002). On the other 

hand, owing to the increase for interest of a model-  
free controller, many researches have been ac- 

complished for Neural network. (Yesildirek et 
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al., 1996, 1995, 1997) 

In the previous work Ha and Han (2000), we 

proposed a class of adaptive robust control of 

robot manipulators  and analyzed the stability in 

sense of Lyapunov.  This controller does not need 

the information of bound  for uncertain factors but 

must have a concave bound function. In this 

work, we propose a class of robust control with a 

neural network structure for robot manipulators  

and analyze the stability in sense of Lyapunov. 

This control law also does not need the bound 

information. Furthermore,  this doesn't  require a 

concave bound  function. So, we expect that the 

result of this work is more broadly applicable. 

The simulation results of 4-axis SCARA type 

robot are provided to show the effectiveness of the 

proposed algorithm. 

2. Robot Dynamic 

The jo in t  coordinate model of  the N - l i n k  robot 

manipula tor  is derived from the Newton-Euler  

equations, which can be written as : 

M(q, fl)#+C(q, q. fl) o+g(q, fl)+f(q, dl, t, fl)=r (1) 

q : n ×  1 joint position vector 

M(q, fl) : n×n  inertia matrix 

C(q, 0, 13)q: n ×1 centrifugal and coriolis vector 

g(q, fl) : n X l  gravity vector 

f (q ,  0, t, fl) : n × l  friction force vector 

r : n × 1 torque vector 

/5 uncertain factors 

Remark  1. The inertia matrix M(q,  fl) is sym- 

metric and positive definite. The nonl inear  term 

C(q, el, 13) in (1) can be suitably chosen such 

that M(q,  13)-2C(q,  q, t3) is skew symmetric. 

The f ( q ,  {1, t, 13) include the torque that occur 

due to structure, non-st ructure  uncertainty such 

as friction and disturbance. 

Standard notations are adopted with vector 

norms being euclidean. Matrix norm is the corre- 

sponding induced norm. Thus, for a real matrix 

M, IIgll=,/Am,n(MrM), /~mln(')(/lmax(')) is the 
min i -mum(max imum)  eigen value of the given 

matrix. 

3. Neural Network 

A neural  network which has the three-layer 

structure is applied to a robot manipula tor  by sub 

controller. The relationship of input -output  is 

given as Fig. 1. 

Figure l is described by 

y ( x ) = W r a ( V r y + O v ) + O w  (2) 

where, 

l 
p E R  n2 
I~ ~ R l×n2 
V ~ R  nl×l 

Ow 
Ov 
tY 

: Input  vector 

: The number  of neuron 

: Output  vector 

A weight of two, three layer 

A weight of one, two layer 

Ouput  layer threshold 

Hidden layer threshold 

Activity function 

The notat ion which has thresholds with wei- 

ghts is written as 

w[~o~] ~, v =  [ ~o~3 ~, x =  [~ l ]  ~, ~ =  [ a i ]  ~ 
(3) 

y(x )  = W~a( W x )  

The tuning of weighting (W,  V) includes the 

tuning of thresholds (Ow, Or). 

The estimation value of  y (x )  is given as 

9 (x) = IfVTa (9rX)  (4) 

5(X) is written by 

y(x) =y(x) - 9 ( x )  
= w ~ a ( W x )  - f fT~a(9~x) (5) 

In the Y=Y--~9, a (VTx)  is described by the 

taylor series expansion. 

Fig. 1 

v > w > 
. ~ ~ g m o i d  

Neural Network Structure 

jl 
> 
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~(x) =IYT(~--~ 'gTx)  + I~T~'V'Tx+w (6) 

where, a = a ( V r x )  

b ' -  aa (z) 
- ~ z  I~:~ 
~diag{ ~ }[I--diag{ ~ }] 

Sub-error factor and bound can be written as 

w(t) = # ~ a ' ? ~ x +  Wr( ) (Wx)~+e~h(X) 
II w (t) It-~ Co + C~IIZII~ + c~llxlllI21i~ (7) 

where, Z-=diag{ W, V } 
Co, C~, C2: Computable constants 

Assumption 1. 
The weighting value ( W, V) has a bound value. 

IIZIIF < Zm (8) 

II'llF: fronius Norm 

4. C o n t r o l  L a w  D e s i g n  a n d  S t a b i l i t y  

The robust position control with the bound func- 
tion of neural network structure is proposed for 
uncertain robot manipulators. 

4.1 Control law design 
The robust controller is given by 

r = M ( q )  (?~a-Sb) +~(q,  {1) ({1a-Se) +~(q) 
(9) 

+ f ( q ,  q, t ) + p ( q ,  {1, ~, t ) - K ~ e - K b b  

The robust term p(q, {1, ~, t) can be written as 

P= - [ [ ~ + v  ifll fzll--- e (10) 

lz ^ ifll/1 II < e - ~ p  

/ z=(b+Se)~(q ,  {1, t) (11) 

p(q, {1, t)-->ll~(q, {1, a, t)ll (12) 

~(q, q,/L t )=  ( _ ~ - M ) ( ~ - S ~ ) +  (~-9) 
+ ( ~ -- C) ({1~- Se) + ( f - f ) (13)  

where, qa: desired trajectory 

e=q--qa,  d={1--{1a 
Ka, Kb: positive diagonal matrix. 

The bound function(p) is following as 

y : W r a ( V r x ) - - p ( q ,  {1, t) (14) 

9 = l~a(9Tx) =t~(q, {1, t) (15) 
The neural network weighting value is given by 

= 21[ ~ +Se[]{ Fa(l?rx) - Fb" l?rx - xFI~) 
ifll/lll>e 

= -211~+SellxFff~ (16) 

ifll/~ll<e 

9--211~+Se11( GxI~Y-KGg}  ifll/~ll_->e (17) 
= - 21l e + Sell KG 9 ifll/1 [I < 

In the taylor series, the compensation for a high- 
order term is written by 

v=-tG(II211+Zm) (~+Se) (18) 

where, 

[[Z[IF<Z~, Z=diag{  W, V } , / G > C 2  
F = F r > 0 ,  G=GT >O, t:>0, x=Eqd{1a~dSe ~]r 

By using this robust control, we analyze the 
fact that the system (1) satisfies the stability; 
practical stability or global uniform attractivity. 
(Chen, 1991; Chen and Pandey, 1990; Corless 
and Leitmann, 1981) 

4.2 Stability analysis 
Definition 1. Practical stability for robot mani- 
pulator The closed-loop system is 

M(q)~l+C(q,  {1){1+g(q)+f(q, {1, t) 
= r ( q ,  {1, ~3, t) (19) 

q(to)-q0, {1(to)-00, ~(t0)=t% 

Consider a robust stabilizing control z'(q, {1, p, 
t) (proved the pre-study) and p(q, {1, p, t) that 
satisfies assumption 1. If the system (1) is subject 
to the control z'(q, {1, ~, t) with ~ given in (15), 
then there exists a constant d > 0  such that the 
closed-loop system(19) has the following prop- 
erties. 

(a) Existence of solutions : 
For each (q0, {10, tSo, to), the system (1) possess 

a solution (q ( . ) ,  {1(.), tS(.)): [to, tl)---~R" 
(b) Uniform Boundedness : 

Given ra, r2~ [0, ~ ) ,  there exist dl (rl" r2), d2 
( r  a, rz) < co such that if [I (qo, {10)II < rt and I[~0- 
Pll_~r2, then [[(q(t), {1(t))l[~dl(rl, r2) and [[~ 
( t ) - p l l < d 2 ( r t ,  r2), for all t~[-to, ~ ) .  
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(c) Uniform Ultimate Boundedness : 
Given any d > d a n d  any r ~ [ 0 ,  oo), there is a 

T(d, r ) ~ [ 0 ,  co) such that if II(q0, q0)ll, II~0-- 
p[l<=r, then II(q(t) ,  0(t))l l ,  IIh(t)-pll<d, for 
all t~ to+ T(d, r). 
(d) Uniform Stability : 

Given any d > d ,  there exists a 8(d)  > 0  such 

that if II (q0, q0)I, lib0- v III- a (d), then II (q (t), 0 
(t))ll, l ib( t ) -p l l<d,  t>Eto, oo). 

This definition is the loose property of the 
asymptotic stability. Namely, this practical stabil- 
ity is what the trajectory of all states does not 
diverge but is maintained inside the ball round a 
circle center point in finite time. 

Using the proof method of Corless and Leit- 
mann (1981), we will show that the system (1) 
has a practical stability. Namely, the derivative of 
Lyapunov candidate function does always have a 
negative value beyond a ball which a circle center 
position is zero. 

Lyapunov candidate function Vis  selected as 

V =  ( e + Se) rM ( t" + Se) + er (K~ + SK~) e 

+12tr { Wr_fi'-' I~" }-1-½It{ CrC-I ¢ }  (20) 

The derivative of Vis written by 

I7=2(d+ Se) rM(~+Se)  
+ (~,+Se) rM (&+Se) +2er(K~+SK~) e (21) 
+tr{ W ' F - ' ~  }+tr{ 17rG-'~ " } 

From (1) and (9), the following equation is derived. 

M~= M~ - M~ e 
= r - C O - g - f  - M ~  
= (if1-M) ~e-~1S~ + ( 8 -  C)(0~- Se) 

- C(&+Se) + (fq-g) + ( ~ - f )  
+P(q, Cl, P, t ) - K ~ e - K ~ d + v  

(22) 

Substituting (21) into (22) and using the property 
of M - 2 C  

17=2(e+Se)r{ ~(q, ?1, d, t) +P(q, q, P, /)} 
- 2erSK~e- 2JKoe 
+2(~+Se)r{P(q, dl, ~, t ) -p(q ,  q, P, /)} 
+tr{ WrF-~W }+tr{ l?rG-~l~ } 

(23) 

To avoid a complication of equation, (23) is di- 
vided by 

V :  ~rl-~ "~r2 (24) 

17,=2(e+Se)r{ ~(q, q, d, t)+p(q, q, P, t)} (25) 
- 2er SKae- 2~ rKbe 

(72=2(d+ Se) r{ p(q, (t, ~, t ) -p (q ,  O, p, t)} (26) 
÷ t~{ r~TTF-1 T/T f }-~- t~{ ~rTG-1 ~" } 

From the previous work (2000), ~2t is given as. 

i£11ull-~e 9"l----R, II~+Sell ~ 
ifll u l l<e g , < 2 e - R d l O + S e l l  2 (27) 
Rl=min{  2tcai/si, 21cbi } 

Based on the value of II #11, the analysis of 122 is 
as follows. 

Frist, if ll/z[l>e, (10) subject to Vz 
ft ^ 

p(q,  q, ~, t ) : - -  ISTWp 

and 

"¢2=21[~+ Sell{ p-~. }+2(d+Se)  rV 
+tr{ WrF-'I~ }+tr{  I T r G - ' 9  } 

=tr{ fff~ (F-'l~ + 2lld+ Sell(~-Y g~x) ) } (28) 
+ tr{ 9~ ( G< C" + zll~'+ Sell~rb'x) } 
+ 2llb+ Sellw+ 2( b+ Se) rv 

Subject to (16), (17) and (18), 122 can be written as 

g2:2lle+Sellx{ tr{ l~r(W - W)}+{ V r ( V -  9)}}(29) 

+ 211~+ Sellw+ 211~+ Sell~(- K~(ll2b + Z~) ) 

where, Z~-diag{ W, V} and I IZ I I~Z~  
The following equation can be in (29) 

tr{ ~r  ( Z - 2 )  } = < Z, Z >F--11211% 
-~ II211,~IIZIIF-I1211~- (30) 
--< 11211~z~-11211~ 

Assumption 2. 
Q that satisfied II Eq~0~3 II < O exists. 

From assumption 2., Ilxll~ll~+Sell+Q 
and from (7), 

II w(t)I1-~ c0+ c,I[211F + GII#+ sdlll2b + GQII2b 
_~ Co+ c,'IloYlI~ + GII~+ Sellll211F (31) 

Then, substituting (30) and (31) into (29), 

v2z211~+Sell'K'[12b(Zm-112b) 
-II~+ Sell2K~ll21b + Zo) ) (32) 
+211~ + Sell( C0+ C,'1121[~+ C211~ + Sel111211F) 
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Now, using 

112D_-< I lzb + 11211,, <- z,,, + 11211,-, Kz > C~ 

in(32), 

21[#+Sell~GII2b-2KAO+Sell~(ll21b+Zm) 
=<21b+Sell~{ G(II2b+Z,~)-K~(II211,~+Z#} (33) 
<0 

Therefore, IYz is finally written as 

9~ <-- - 211#  + Sell{ KII211v ( - Zm + 11211F) 
- Co- G ' I I 2 1 1 F  } (34) 

-~ -2119 + sell{ ,v ( I I2D-  c , ) ~ - D  } 

1 1 , 
W h e r e ,  Ca=~ZmJV~KK C1 , D=Co + KCa z 

Second, if I I /~ II < e, subject to (10) 

P(q, el, P, t )=- - f t  ^ 

a n d  

r f P  , u ,  fTz=2(O+Se) ] , ~ p - T p  } 

+tr{ l ~ r F - ' #  } + t r {  I ~ r G - '  r ~  } 
(35) 

=2 Ib+ SelP { p~_h~ } 
6 

+ t r {  l ~ r F - ' I ~  } + t r {  l,TrG-'l) } 

I~ (35), 

2 .Ib +Sell~ { o~-h  ~ } 
6 

_~2e 

From (16), (17), (18) and (30), 1)-2 is written by 

V,~_2e+2KllO+Xell (tr{l~( W- 1~)}+ tr{ 17( V- 9)}) 
=<2e+2Kb + Sellll211v (z~,-ll2b) (37) 

=<2e-24#+Sell ( 11211~-@Z~,2)4~+LKIIO+SelIZ~ 

As we unite (27), (34) and (37), we have the 

following equation for V 

ifll/~ll_->e I)'<-2lb+SeH{ xllZlb-C3)2-D} (38) 
- R l lb  + Sell 2 

ifll,~ll< e ?~4e-2~11~+8<1 (II211,--~Z,,, ] ~ - -  \ Z / 

(39) 
+lKll~a+SellZ~ - R i l l S + S e l l  ~ 

' : 1 .  

Conclusively, in case II z, II ~ e if Ilglb > C~÷ ~/@ 

o r  lie+ Sell > ~  Ri is satisfied then I~<0. This fact 

shows that system (1) has a practical stability by 

proposed controller. 
/cZZ~ +,/~zZ~ +64eR1 

In case Ibll<c if II~+Sell> 
4R, 

is satisfied then l)-<0. Also, This fact shows that 

system (I) has a practical stability by proposed 

controller. 

5. S i m u l a t i o n  

We consider a 4 -DOF SCARA type manipu- 

lator. In this simulation, we assume the lack of all 

masses knowledge and the lack of mass bound 

function. Hence, we shall treat these factor as the 

uncertainties. 

Table 1 Robot specification and parameter 

~ Axis 
Mass ~ 1 2 3 4 
(kg) 

Real 10.71 9.65 0.8 0.3 

Normal 13 12 1.5 0.6 

e (= l .4 ) ,  All elements of G, H are 1. 
Zm=lO, x = l ,  K , = [ 1  1 1 0.005] 

o.7 F ....... i-Z74[ild,::; ...... ! .......... -~ .......... ".' ........... 

~ o o  F - - - l - . ~ - - i - - -  . . . . . . . . . .  ~ . . . . . . . . . .  ~ . . . . . . . . . .  i . . . . . . . . . . .  

o.~ ~.-/-/ ..... ~- ......... i .......... 4 .......... -" ........ 

o a ~ z .  : - - ; - - - - i : : -  . . . . . . . . . . .  i . . . . . . . . . .  ~ . . . . . . . . . .  i . . . . . . . . . .  
o 2 , ; :  . . . . . .  /,--! . . . . . . . . .  ! . . . . . . . . . .  -~ . . . . . . . . . .  ,~ - 
o:E!/;iii!ii_- ................... .............. 

1 2 3 4 
T i m e  [ S E C  ] 

Fig. 2 Desired trajectory 

o 02 / 

~ - o  0 4  

~ -O 0 6  

"~ -o o s  

- o i  

- 0 1 2  

- 0 1 4  

Fig. 3 

2 3 4 
T i m e  [ S E C  ] 

Position error without uncertainties 
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L 

0 9 r  

3 4 
"hn3e [ :'>EC ] 

Fig. 4 Position error with uncertainties 

0 6  

~o~ 
( ~ 0 4  

O 3  

0 2  

0 1  

o a t  . . . . . . . . . . . . . . . . . . .  i . . . . . .  i . . . . . . . . . .  i . . . . . . . .  

o ~ ..................... :: . . . . . . . .  i ............... ~ ........... 
. . . . . . . . . .  r . . . . . . . . . .  ~ . . . . . . . . . .  4 . . . . . . . . . . .  ~ . . . . . . . . . . .  

o .......... i- ....................... ~- ............ ~ - - - ~  ......... 

" l i m e  [ S E C  ] 

Fig. 5 Weighting value W 

(system with uncertainties) 

The simulation results are shown graphically in 

Figs. 2-5. 

In the Figs. 3-4, we know the effectiveness of 

the proposed algorithm. Figure 3 is a position 

error at a system without uncertainties and Fig. 4 

is a position error at a system with uncertainties. 

In the Figs. 3 and 4, we know that the position 

error is nearly the same. Namely, the system with 

uncer rain factors has a practical stability by the 

proposed control law. Also, in the Fig. 5, the 

weighting value W is bounded and weighting 

value V is bounded. 

6. Conclusion 

For a robot manipulator, we proposed the ro- 

bust controller with neural network structure and 

analyzed the stability in the sense of Lyapunov. 

Namely, the neural network estimate the bound 

function and the robust control use the estimated 

bound function. Unlike the previous work (2000), 

this control law don't need the concave property 

but the result of this control law is similar to the 

previous control law. 
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